

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [Canadian Research Knowledge Network]
On: 25 September 2009
Access details: Access Details: [subscription number 783016891]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Production Research
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713696255

A tabu search heuristic for scheduling the production processes at an oil
refinery
Jan A. Persson a; Maud Göthe-Lundgren b; Jan T. Lundgren c; Bernard Gendron d

a Department of Software Engineering and Computer Science Blekinge Institute of Technology, b Department
of Mathematics Linköpings universitet, Sweden c Department of Science and Technology, Linköpings
Universitet, Sweden d Centre de recherche sur les transports, Université de Montréal, Québec, Canada

Online Publication Date: 01 February 2004

To cite this Article Persson, Jan A., Göthe-Lundgren, Maud, Lundgren, Jan T. and Gendron, Bernard(2004)'A tabu search heuristic for
scheduling the production processes at an oil refinery',International Journal of Production Research,42:3,445 — 471

To link to this Article: DOI: 10.1080/00207540310001613656

URL: http://dx.doi.org/10.1080/00207540310001613656

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713696255
http://dx.doi.org/10.1080/00207540310001613656
http://www.informaworld.com/terms-and-conditions-of-access.pdf

int. j. prod. res., 2004, vol. 42, no. 3, 445–471

A tabu search heuristic for scheduling the production processes at

an oil refinery

JAN A. PERSSONy*, MAUD GÖTHE-LUNDGRENz,
JAN T. LUNDGRENx and BERNARD GENDRON�

In this paper we present a tabu search heuristic which can be used for scheduling
the production at an oil refinery. The scheduling problem is to decide which
production modes to use at the different processing units at each point in time.
The problem is a type of lot-sizing problem where costs of changeovers, inven-
tories and production are considered. In the suggested tabu search heuristic
we explore the use of variable neighbourhood, dynamic penalty and different
tabu lists. Computational results are presented for different versions of the
heuristic and the results are compared to the best-known lower bound for a set
of scheduling scenarios.

1. Introduction

We consider the scheduling of a set of processing units at an oil refinery. The
production at an oil refinery is carried out using a set of processing units, where the
output from one unit may be used as input for another unit. Each processing unit
can normally be operated in different modes of operation, or run-modes, where each
mode is defined by the set of input/output products and the rate at which the
products are produced and consumed. The change from one run-mode to another
causes disturbances to the production process, which reduces the quality of the
products produced. In order to avoid frequent changeovers, we introduce change-
over costs. Further, we also consider inventory costs, and costs of using a run-mode.
Consequently, there is a trade-off between how long to use a run-mode and the
obtained inventory levels. The scheduling problem concerns the question of which
mode of operation to use at a particular point in time in each processing unit, while
meeting the demand. The scheduling is strongly related to the planning at other
levels in the company, and it affects many types of decisions in the company.
The ability to efficiently construct high-quality schedules is therefore crucial for
the refinery in order to be competitive.

Not very much is reported in the literature regarding the scheduling of operation
modes at refineries using optimization models. One example is given in Ballintijn
(1993), which uses a mixed-integer linear programming model to minimize the
number of changeovers between operation modes. More recently the minimization

Revision received July 2003.
yDepartment of Software Engineering and Computer Science Blekinge Institute of

Technology.
zDepartment of Mathematics Linköpings universitet, Sweden.
xDepartment of Science and Technology, Linköpings Universitet, Sweden.
�Centre de recherche sur les transports, Université de Montréal, Québec, Canada.
*To whom correspondence should be addressed. email: jan.persson@bth.se

International Journal of Production Research ISSN 0020–7543 print/ISSN 1366–588X online # 2004 Taylor & Francis Ltd

http://www.tandf.co.uk/journals

DOI: 10.1080/00207540310001613656

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
9
:
1
1

2
5

S
e
p
t
e
m
b
e
r

2
0
0
9

of changeover and inventory costs is considered in Göthe-Lundgren et al. (2002). In

that paper, the focus was on the modelling of the refinery scheduling problem and

the potential use of optimization-based solution methods and not on the solution

methods. In areas related to the scheduling of operation modes, such as long-term

aggregate production planning (see Coxhead 1994 and Reklaitis 1996), and blending

problems (Deqitt et al. 1989, Rigby et al. 1995, Amos et al. 1997), optimization

models have been used. Other works related to the scheduling of operation modes

concern unloading and blending of crude oil, feed management, and to some extent

tank and pipe management (see Lee et al. 1996 and Shah 1996). A review of the

problems and the models within the area of refinery planning and scheduling is given

in Göthe-Lundgren et al. and Persson (2002).

The process scheduling problem we study can be formulated as a mixed integer

linear programming problem, where the decisions concern which mode of operation

to use in each processing unit during a set of time periods. The optimization model

can be regarded as a capacitated lot-sizing problem with start-up costs, where more

than one product is obtained for some modes of operation and where inventory

capacities are explicitly considered. For an extensive review of lot-sizing problems

and solution methods, see Pochet and Wolsey (1995), Constantino (1995) and Drexl

and Kimms (1997).

We develop a tabu search heuristic for finding good schedules for the process

scheduling problem. The origin of tabu search dates back to the early years of the

1970s, and the tabu search of the form we know today was introduced in the late

1980s. For a general description of tabu search, see Glover (1989, 1990). Tabu search

has been applied with success to various optimization problems (see the reports

presented in Volume 41 of the Annals of Operations Research (1993), the application

survey in Glover and Laguna (1993), and Volume 106 of the European Journal of

Operational Research (1998)). Applications on various scheduling problems exist,

but we have found only one, Kimms (1996), which deals with a lot-sizing problem

similar to the one we study. Compared to Kimms (1996), our process scheduling

problem is more complex, since we have to deal with the simultaneous production of

different products.

We consider real-life scheduling scenarios obtained from the Nynäashamn

refinery in Sweden, owned by the Nynas oil company. According to our experience,

guaranteed optimal schedules cannot be found in reasonable time for these scenarios

using exact methods. This is due to the high complexity of the type of lot-sizing

problem we are studying, a fact which is well known (see Constantino (1995), for a

review of the time complexity of solving related lot-sizing problems). A tabu search

heuristic is thus particularly indicated to address the problem.

The contribution of this paper is the introduction of a tabu search heuristic

which can be used for finding good process schedules for refineries and possibly for

other processing industries. We explore several neighbourhood structures, which can

be used in the presented tabu search heuristic and possibly also in other types of

heuristics (e.g. simulated annealing). We investigate what features are important for

the performance of the tabu search heuristic on problem scenarios of practical size.

In section 2, we introduce the process scheduling problem, by describing the

production facility and the planning situation at an oil refinery. The problem is

mathematically formulated in section 3 and the tabu search heuristic is presented

in section 4. In section 5, computational experiments are analysed for different

446 J. A. Persson et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
9
:
1
1

2
5

S
e
p
t
e
m
b
e
r

2
0
0
9

versions of the heuristic. Finally, conclusions and future research are outlined in
section 6.

2. Problem description

In this section, we give a description of the production process and the associated
scheduling problem at the Nynäshamn refinery. At the refinery, two major product
groups are produced, bitumen products and naphthenic special oils. Additionally,
some naphtha is produced, but this quantity is not important for the planning due to
its low relative value.

The production process at the Nynäshamn refinery consists of three process-
ing units; the central distillation unit (CDU), which transforms crude oil into
bitumen, distillates, and naphtha, and two hydro-treatment processes (HF and
HT) which transform distillates into naphthenic special oils. The production process
is illustrated in figure 1.

In the CDU one bitumen product, four different distillates, and some naphtha
are concurrently produced. At full production capacity, the rate of production cor-
responds to using approximately 4500 tonnes of crude oil per day. Different modes
of operation can be used in the CDU, where the mode of operation, or run-mode,
defines which type of crude oil that is used and at which rate the CDU is fed (which
may be less than 4500 tonnes per day but not less than approximately 2000 tonnes).
The run-mode also specifies which particular distillate products and bitumen product
are concurrently produced. For example, a particular run-mode represents the con-
tinuous production at a rate per day corresponding to 45 tonnes of nahphta; 315,
279, 423, 545 tonnes of the different distillate products A, B, C, and D, respectively;
and 2893 tonnes of a bitumen product E, when using 4500 tonnes of crude oil F.
There are about 10 different run-modes normally used in the CDU during a limited
time interval (of approximately six months).

Whenever the run-mode of the CDU is changed, it needs time to stabilize under
the new operating conditions. The characteristics of the products obtained are

Figure 1. A schematic picture of the production process at the Nyäshamn refinery.

447A tabu search heuristic

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
9
:
1
1

2
5

S
e
p
t
e
m
b
e
r

2
0
0
9

therefore uncertain and fluctuate for 1–2 h after a changeover. During this period,
the distillates may have to be degraded to fuels of lower sales values. The degree of
downgrading depends on several factors (e.g. the exact characteristic of the products
in the tanks, the status of the production process, and the total quantity of the
product produced by using the run-mode). In general, the production capacity of
high-value distillates is reduced by frequent changeovers due to downgrading.

A run-mode used in the hydro-treatment processes represents the consumption of
a particular distillate and the production of a particular naphthenic special oil, i.e.
the run-mode defines the rate and the input and output of the process. The choice of
run-modes in the two hydro-treatment units is restricted by the limited capacity of
the hydrogen generating unit, and by the capacity of removing sulphur from the
hydro-treatment units. We will refer to these limitations as resource constraints.
Each processing unit can be operated using 5–7 different run-modes. After chang-
ing the run-mode used in a hydro-treatment process, the product produced during
the first hour normally needs to be downgraded. The extent of downgrading is
partly sequence dependent, i.e. the required time for downgrading depends on
which run-modes the production is switched between. We will model the complex
effects of changeovers in the processing units by simply including costs for changing
run-modes.

Normally, there are two base bitumen products produced in the CDU. These
are blended into about five different bitumen products, before being shipped with
one of the two tankers owned by Nynas to a depot located in northern Europe.
The naphthenic special oil products may also be blended, before being shipped with
tankers to customers located world-wide. Currently, at the refinery, the planners
construct a process schedule, which specifies which run-mode to use during each
24-h period in each processing unit, in order to meet the planned shipments during
a planning horizon of one month.

The decision in the process scheduling problem is to decide which run-mode to
use in a particular point in time, or equivalently, when to change between run-
modes, in order to meet the planned deliveries from the refinery. There are safety
stock levels and storage capacities, which limit the inventory levels which must be
accounted for when planning the production. Further, there are additional resources
limiting the production, which may prohibit the use of certain combinations of
run-modes. However, most of these constraints are somewhat soft, meaning that
solutions slightly violating them may be of interest. For example, a production
schedule almost satisfying the planned deliveries may be of interest since some
shipments can be re-scheduled without any greater impacts on the refinery’s costs.
Further, violation of resource constraints may be ignored if a lower quality or a
lower production rate of the products is acceptable for a short period of time.

3. Problem formulation

In this section we present a mathematical formulation of the process scheduling
problem at the Nynäshamn refinery. We formulate the model using general nota-
tion, which shows the possibility of using the model for other refinery production
scheduling problems. The optimization model describing the process scheduling
problem together with the notation is summarized in Appendix A.

We first introduce some notation. A time discretization of the planning period
is made, and the resulting set of time periods is denoted by T. In the Nynas case,
the length of one period is 24 hours, and the planning period is either one or two

448 J. A. Persson et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
9
:
1
1

2
5

S
e
p
t
e
m
b
e
r

2
0
0
9

months (31 days or 60 days). The lengths of the time periods are equal during the
whole planning horizon, i.e. the time discretization is uniform. The decision variables
ymt are used to represent the process schedule and they are defined to assume the
value 1 if run-mode m is used at time period t, else they assume the value 0.

The set of processing units is denoted by Q and at the Nynäashamn refinery, this
set includes the CDU and the two (or three) hydro-treatment units. The set of
possible run-modes at processing unit q is denoted by Mq, and the union of all
possible run-modes at all processing units is denoted by M, i.e. M ¼ [q2QMq. It is
also assumed that a run-mode is dedicated for a particular processing unit, i.e.
Mq \M �qq ¼1, q 2 Q and �qq 2 Q : �qq 6¼ q. Let P denote the set of all types of products
including input products (components) and end products. Further, we let R denote
the set of resources, which in the Nynas case is associated with hydrogen generation
and sulphur removal.

Since only one run-mode can be used in each processing unit at each time period,
the equality X

m2Mq

ymt ¼ 1, ð1Þ

must hold for all q 2 Q and t 2 T . Without loss of generality we can enforce that
one run-mode must be used in each processing unit in every time period, since one
run-mode always represents zero production (the stop-mode).

In order to consider changeover costs we define a set of changeover variables,
sseqmm̂mt, each of which assumes the value 1 if a changeover is performed from run-mode
m to m̂m between time periods t�1 and t, and 0 otherwise. Further, we use start-up
variables, smt, each of which is equal to 1 if run-mode m is started at period t (i.e. it
was not used at the previous time period), and 0 otherwise. The start-up variables
are introduced since they are convenient to use in our tabu search heuristic. The
constraints

sseq
mm̂mt
þ 1 � ym, t�1 þ ym̂mt, ð2Þ

for all q 2 Q,m 2Mq, m̂m 2Mq : m̂m 6¼ m, t 2 T , and

ym, t�1 þ smt � ymt, ð3Þ

for all m 2M, t 2 T , enforce these two types of variables to assume value 1 when a
changeover is performed. We do not include any constraints enforcing the variables
smt and sseqmm̂mt to become zero when no changeover is performed, since this will be the
case in an optimal solution due to non-negative changeover and start-up costs.

A process schedule (solution) can, besides being represented by variables ymt,
also be represented by the start-up variables smt. If a certain run-mode m 2Mq

of a processing unit q is utilized at time t ¼ t1 (ymt1
¼ 1), then we know that

run-mode m is used until a new start-up is performed of that processing unit at
time t ¼ t2>t1, i.e. ymt ¼ 1, 8t 2 ft1, . . . , t2 � 1g. Consequently, it is possible to
translate a solution expressed in the variables ymt into the variables smt and vice
versa.

Given the values of the decision variables, ymt, the quantities of the input (con-
sumption) and output (production) follow at each time period. Let xpt and zpt denote
the variables for production and consumption, respectively, of product p at period t.
These variables are related to the run-mode variables by the production and
consumption yield of product p when operating run-mode m. Let apm denote the

449A tabu search heuristic

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
9
:
1
1

2
5

S
e
p
t
e
m
b
e
r

2
0
0
9

production yield and let bpm denote the consumption yield. Then the variables xpt
and zpt are related to ymt according to

xpt ¼
X
m2M

apmymt, zpt ¼
X
m2M

bpmymt, ð4Þ

for all p 2 P and t 2 T . The production and consumption yields are by definition
non-negative.

The inventory levels, Ipt , of product p at the end of period t, can be computed by
using standard inventory balancing constraints including production, consumption
and demand. The demand is given by the shipment plan and denoted dpt for product
p at period t. The parameter dpt may be negative if it represents a delivery of the
product to the refinery (crude oil or imported components). Hence, for a given
schedule, the inventory levels for a product p and a time period t can be computed
in the order t ¼ 1, . . . , jT j, by using the equations

Ipt ¼ Ip, t�1 þ xpt � zpt � dpt: ð5Þ

The initial inventory levels at the beginning of the planning horizon, Ip0, are assumed
to be given.

For each product p and time period t, we specify the available storage capacity,
denoted by �IIpt. This capacity is defined as the total capacity of the tanks normally
used for the product. In addition to the upper bounds on the inventory levels, we
have lower bounds denoted by Ipt, representing requirements on safety stock levels
for product p at period t. Requirements on the inventory level variables Ipt can then
be formulated as

Ipt � Ipt � �IIpt, ð6Þ

for all p 2 P and t 2 T .
In order to ensure that the created schedules do not require too much of the

available resources, we introduce resource constraints. For example, the run-modes
of the hydro-treatment processing units have different needs for hydrogen, and the
capacity of generating hydrogen is not large enough to support all combinations of
run-modes. The same problem also occurs with respect to the capacity of taking care
of the sulphur, which is an output from the hydro-treatment processes. Therefore,
the inequalities X

m2M

gmrymt �
�EEr, ð7Þ

for all r 2 R and t 2 T , must be satisfied, where gmr represents the use of resource r
when using run-mode m, and �EEr denotes the available resource of type r.

There is a number of different cost components, which all depend on the chosen
process schedule. Since we are using a tabu search heuristic, we have great flexibility
when choosing which cost components to consider. The costs considered here are
inventory costs, changeover costs, start-up costs, and production costs, and can be
expressed mathematically asX

t2T

X
p2P

cIptIpt þ
X
t2T

X
m2M

X
m̂m2M:m̂m 6¼m

cseqmm̂mts
seq
mm̂mt þ

X
t2T

X
m2M

csmtsmt þ
X
t2T

X
m2M

c
y
mt ymt: ð8Þ

The inventory cost for product p at period t is denoted by cIpt, and this cost is
associated with the capital cost for the product and the cost of keeping the product

450 J. A. Persson et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
9
:
1
1

2
5

S
e
p
t
e
m
b
e
r

2
0
0
9

warm. The inventory cost of a product is assumed to be proportional to the
inventory level.

The changeover cost is associated with the negative effects of changing modes
(e.g. the possible necessity to downgrade the products after a changeover). Sequence
dependent changeover costs are considered by specifying a cost parameter cseqmm̂mt of
changing from run-mode m to m̂m between time periods t�1 and t. We also define csmt

as the start-up cost of run-mode m in period t. Note that a large portion of the
changeover costs can be viewed as sequence independent, i.e. the cost of starting a
run-mode does not depend on which run-mode it is switched from. Hence, start-up
costs allow one to represent changeover costs when sequence dependency can be
ignored.

The total production capacity might exceed the total demand during the planning
horizon. Then it might be economical to produce products for adding to the inven-
tory levels. This is considered in the model by associating a value of using a partic-
ular run-mode. This value of using a run-mode is based on the values of its input and
output products, which in turn can be estimated by using information from different
planning steps at the refinery. The overall objective is to minimize the total cost in
our model, and therefore, the estimated value of using a run-mode is given as a
negative cost to the model, represented by the coefficient c

y
mt. Positive values of c

y
mt

are often referred to as set-up costs.
The complete optimization model, given by constraints (1)–(7) and by the cost

function (8), is referred to as [SCH] and is summarized in Appendix A. For planning
purpose, the constraints (6) and (7), and the non-negativity constraints of the vari-
able Ipt may be regarded as soft and can accordingly be relaxed with a suitable cost
of violation. The obtained problem is referred to as [R-SCH]. However, violation of
any these constraints should only be allowed if no feasible solution can be found or if
a competitive low-cost schedule can be found which only marginally violates these
constraints. Hence, we allow the violation of these constraints at a rather high cost
compared to the costs in the objective function (8). We are primarily interested in the
best solution to [R-SCH].

In case that a schedule implies that a small deficit of a product will occur at a time
period (i.e. a constraint of type (6) is violated), that deficit will persist during all the
subsequent time periods and incur penalties, unless the deficit is eliminated by pro-
duction. Since a deficit at the refinery can be dealt with, for example, by re-planning
of the shipments from the refinery, we would like a deficit to incur a limited penalty,
if the deficit is eliminated by production at a later point in time. Further, since
violations of the maximal inventory levels can be dealt with, for example, by
re-assigning tanks for storage, we would like the violations to incur a limited penalty.
In order to model this situation, we modify the inventory levels whenever they
are not within the specified limits in the previous time period. That is, we modify
constraints (5) to

Ipt ¼ Ip, t�1 þ xpt � zpt � dpt þ Rf
½ðIp, t�1 � Ip, t�1Þ

þ
� ðIp, t�1 � �IIp, t�1Þ

þ
�, ð9Þ

where Rf expresses the fraction of the deficit or of the excess to be eliminated.
Following discussions with planners at Nynas, it was decided that a reasonable
value is Rf

¼ 0.4.
The problem [SCH] can be interpreted as a generalization of a lot-sizing problem.

Since we consider multiple products, production capacities and start-up costs, our

451A tabu search heuristic

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
9
:
1
1

2
5

S
e
p
t
e
m
b
e
r

2
0
0
9

problem [SCH] is similar to the multi-item capacitated lot-sizing problem with start-
up costs, studied by Karmarkar and Schrage (1985). The proposed model, however,
has a number of additional characteristics. It has an all-or-nothing characteristic,
meaning that production (or consumption) can only be at zero-level or at the capa-
city level (apm or bpm) given by the used run-mode. This is expressed by the equality
requirements in constraints (4). Further, the products considered can be both pro-
duced and consumed, which makes it a multi-level (multi-stage) problem. We need
to consider not only the product structure but also the structure of the production
facility, i.e. which different run-modes can be utilized simultaneously. Additionally,
in the model [SCH] the production of one product may ‘force’ the production of one
(or several) other products. Upper limits on the inventory levels are often not
included in lot-sizing models and the feature of forcing the production of multiple
products appears not to have been previously accounted for in lot-sizing models.

It is known that the capacitated lot-sizing problem with start-up costs is hard
to solve using exact methods, even for relatively small instances. For example, in
Constantino (1996), problems with up to 180 binary set-up variables (corresponding
to ymt) are solved using valid inequalities and a branch-and-bound procedure.
Heuristic methods can also be found in the literature (see the review in Drexl and
Kimms (1997). For example, in Kimms (1996) a tabu search and a randomized regret
search heuristic are used to find schedules to a capacitated lot-sizing problem with
start-up costs, where production and consumption of only a single product was
allowed at any time period. The tabu search is used to direct the alterations of a
graph, which is used for creating schedules (solutions) to the problem. Also, the
multiple machine capacitated lot-sizing problem is solved using randomized regrets
in Kimms and Drexk (1998) and genetic algorithms in Kimms (1999).

4. A tabu search heuristic

In this section we first present a short general description of tabu search. Then we
provide a detailed description of our tabu search heuristic for the process scheduling
problem.

Tabu search can essentially be regarded as a refined neighbourhood (descent)
search heuristic, in which the definition of the neighbourhood may vary and in which
local deterioration of the objective function value is allowed. It iteratively moves
from a current solution �k by selecting the best solution �kþ 1 among those belonging
to a neighbourhood of the current solution. Moves implying a move back to pre-
vious solutions are declared tabu for some iterations and are stored in a tabu list.
The search is guided by the choice of the length and the type of the tabu list, by
the definition of the neighbourhood, and by the function used for evaluating solu-
tions. The elements used for guiding the search are often modified during the
search procedure in order to create periods of intensification and diversification.
Intensification forces the search to focus on solutions similar to the solution cur-
rently investigated, whereas diversification implies that the heuristic is forced away
from the current solution.

The basic steps of a general tabu search heuristic are given below, where �
denotes the solution (feasible or infeasible) at iteration k, �f–best denotes the best
feasible solution found so far, and K denotes the maximum number of iterations.
The state at iteration k is denoted by Sk and it defines, for instance, the solutions or
moves that are currently tabu and the level of violation of some relaxed constraints
during recent iterations. For a solution �k, the set Ncand(�

k,Sk) is the candidate set of

452 J. A. Persson et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
9
:
1
1

2
5

S
e
p
t
e
m
b
e
r

2
0
0
9

non-tabu neighbouring solutions. An aspiration criterion may be utilized, such that a
‘tabu solution’ can be selected as the next iterate if, for example, it is better than
�f–best. A modified objective function, cm(�k,Sk), is used, which is based on the
original objective function, cð�kÞ, and additional penalty terms included for guiding
the heuristic towards feasible solutions.

1. Initialization
. Determine �0 and S0. Let �f–best/�

0 if �0 is feasible, and k 0.
2. Selection of � kþ1

. Determine Ncand(�
k,Sk).

. Choose �kþ1 2 Ncandð�k,SkÞ, that minimizes cmð�kþ1,SkÞ.
3. Update and termination

. Update Skþ1 and if c(�kþ1)<c(�f–best) and �kþ1 feasible, let �f–best/�
kþ1.

. Terminate if any stopping criterion is satisfied (e.g. if k � K) else let
k kþ1 and goto step 2.

Let �k denote a solution to our scheduling problem. In our tabu search we make
sure that the solution �k satisfies formulation [R-SCH]. We keep track of the best
solution to [R-SCH], denoted �best, with corresponding value of the modified objec-
tive function given by cm(�best,S), where the state S includes a specification of
how much to penalize infeasibility. Additionally, we keep track of the best ‘feasible
solution’ �f–best which is feasible with respect to [SCH].

It is possible to use any of the variables smt, ymt or sseq
mm̂mt

to uniquely define a
schedule. In our tabu search heuristic we use the start-up variables smt for defining a
schedule. Then, given the values of smt, the corresponding values of the variables ymt

can easily be computed. Thereby, all other variables can also be computed by using
the relations given in section 3.

4.1. Neighbourhoods
In order to define a neighbourhood of a given solution �k to the relaxed

scheduling problem [R-SCH], we use several sub-neighbourhoods. The complete
neighbourhood N(�k) is the union of these sub-neighbourhoods. Then, we typically
consider only a subset of this complete neighbourhood at the kth iteration, i.e.
Ncandð�

k,Sk
Þ � Nð�kÞ, where Ncand(�

k,Sk) is the set of solutions we investigate at
iteration k. The sub-neighbourhoods introduced in this section are illustrated by
examples in Appendix B.

The sub-neighbourhood denoted by Ne/l (�
k) (earlier/later), consists of all solu-

tions where a start-up of a run-mode is performed either one time period earlier or
one period later than the start-up times in �k. Only one change is allowed, i.e. any
solution where two start-ups are altered simultaneously is not included in Ne/l (�

k).
The sub-neighbourhood, Nmove(�

k), is defined by solutions where one of the
current start-ups is changed to a start-up of another run-mode but in the same
time period and in the same processing unit. We do not allow a start-up of a run-
mode that is already in use or the start-up of a run-mode that is the next one to be
started.

The sub-neighbourhood Nswitch(�
k) allows the temporal order (in time) of two

consecutive run-modes to change start-up positions and lengths. The changes can be
characterized as two simultaneous changes associated with the sub-neighbourhood
Nmove(�

k).

453A tabu search heuristic

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
9
:
1
1

2
5

S
e
p
t
e
m
b
e
r

2
0
0
9

The three sub-neighbourhoods given so far do not allow for any changes in the
number of start-ups. The sub-neighbourhood Nadd(�

k) is obtained by adding a single
start-up at all possible positions without violating constraints (1) and without making
double start-ups of the same run-mode. The sub-neighbourhood Nremove(�

k) consists
of solutions where a single start-up is removed from the solution �k.

Next the issue of how to use the sub-neighbourhoods is discussed. In order to
reduce the total number of solutions to be evaluated in Ncand(�

k,Sk) and to direct the
search, the different sub-neighbourhoods are included at some given periodicities,
pe/l, p move, pswitch, padd, and premove, respectively. The sub-neighbourhood Ne/l (�

k) is
used in almost all iterations and the other sub-neighbourhoods not as often. (The
periodicities used are presented later in table 2 of section 5.3.) However, the sub-
neighbourhood Ne/l (�

k) is excluded when another sub-neighbourhood is forced to be
utilized. For example, the periodicity pmove ¼ 43 implies that at every 43rd iteration
the sub-neighbourhood Nmove(�

k) is used. Then, the sub-neighbourhood Ne/l (�
k) is

excluded from the neighbourhood (Ncand(�
k,Sk)) investigated at iteration k. The

exclusion of Ne/l (�
k) is referred to as the forced feature. The sub-neighbourhood

Nmove(�
k) is also used at every b pmove=2c iteration, but in this case, the sub-

neighbourhood Ne/l (�
k) is not excluded from the neighbourhood explored. The

objective of this feature is to favor diversification. During the initial phase of the
heuristic, the neighbourhood Nadd(�

k) is used more often than implied by the
periodicity padd. This makes sense if the starting solution �0 contains very few
start-ups. This initialization is described in section 5.2.

The neighbourhood used at an iteration is reduced in a stochastic manner in
order to speed-up the heuristic, that is, sampling is utilized for reducing the number
of evaluations. This is referred to as using a reduced evaluation of the neighbour-
hood. On average, only 50% of the solutions in the neighbourhood Nmove(�

k) and
25% of the solutions in the neighbourhood Nadd(�

k) are randomly selected. Since
the number of solutions in these sub-neighbourhoods is relatively many compared to
the other sub-neighbourhoods, a substantial speed-up is obtained.

A speed-up is also achieved by partially locking the solution corresponding to the
run-modes of one processing unit for some iterations. Then, only such solutions that
correspond to changes of the schedule for the other processing units are included in
the candidate set of solutions Ncand(�

k,Sk). Since parts of the solution space are
locked, this implies that intensification increases, and only solutions with some
similarities are investigated. This feature is referred to as locked. If any processing
unit should be locked and which one to lock is decided upon randomly. The prob-
ability of exclusively locking one processing unit was set to 1=ðjQj þ 1Þ.

4.2. The modified objective function
Given a solution �k, which is feasible in [R-SCH], a modified objective function

value cm(�k,Sk) can be computed, where Sk denotes the state of the tabu search at
iteration k. The modified objective function value cm(�k,Sk) is computed according to

cmð�k,Sk
Þ ¼ cð�kÞ þ TPI

ð�k,Sk
Þ þ TPE

ð�k,Sk
Þ, ð10Þ

where c(�k) is the original objective function value defined by (8). TPI(�k,Sk) and
TPE(�k, Sk) are penalty costs with respect to inventory level constraints (6) and to
resource constraints (7), respectively.

454 J. A. Persson et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
9
:
1
1

2
5

S
e
p
t
e
m
b
e
r

2
0
0
9

The penalty for solution �k with respect to the inventory level constraints (6) can
be computed as

TPI
ð�k,Sk

Þ ¼
X
p2P

X
t2T

h
P

�II
ðSk
ÞðIpt � �IIptÞ

þ
þ PI
ðSk
ÞðIpt � IptÞ

þ
i
, ð11Þ

where P
�II (Sk) and PI (Sk) are parameters expressing how much to penalize the

violation of the lower and upper inventory level constraints, respectively. The
non-negativity constraints on Ipt can be ignored since solutions which do not satisfy
these constraints are penalized in (11). In our implementation P

�II (Sk) and PI (Sk) are
equal and represented by the parameter P(Sk), i.e. PðSk

Þ ¼ P
�II
ðSk
Þ ¼ PI

ðSk
Þ. This

parameter can be allowed to vary depending on the state of the tabu search. We
adjusted the value of the parameter P(Sk) depending on the smoothed average value
of TPI(�k,Sk) in previous iterations. This feature, called dynamic penalty, is achieved
by using the formula PðSk

Þ ¼ �1 � PðS
k�1
Þ þ ð1� �1Þ � �2 � TP

I
ð�k�1Þ=ðPðSk�1

ÞÞ. In
our implementation, �1 ¼ 0:99, implying that P(Sk) is close to PðSk�1

Þ, and �2 ¼ 1
or �2 ¼ 0:5. The rationale for this formula is that if there has been a fairly high
level of feasibility violation for some iterations, it appears reasonable to increase
P(Sk) in order to discredit solutions which are infeasible in [SCH]. If, on the other
hand, there has been a low level of infeasibility, it appears reasonable to decrease
the penalty, allowing the ‘solution path’ to traverse infeasible regions and hopefully
find better solutions.

Solutions which do not satisfy the restrictions on the usage of the common
resources (7) are penalized by computing

TPE
ð�k,Sk

Þ ¼
X
r2R

X
t2T

PE
r ðS

k
Þ

X
m2M

gmrymt �
�EEr

 !þ
�EEr

0
BBBB@

1
CCCCA, ð12Þ

where PE
r ðS

k
Þ specifies how much to penalize each fraction over-utilization of the

resource r. Here we penalize over-utilization of the resources by a constant factor
(independent of the state).

In order for the tabu search heuristic to be efficient, a fast evaluation of cm(�k, Sk)
is crucial. Given a schedule represented by the start-up variables smt, the variables ymt

and sseq
mm̂mt

can be computed efficiently. Additionally, in order to compute the modified
objective function value cm(�k,Sk), we need to compute the inventory levels of Ipt.

In order to speed up the computation of Ipt we utilize the fact that solutions in
Ncand(�

k,Sk) often differ only with respect to a single start-up compared to the start-
ups in �k. This implies that it is necessary to recalculate Ipt only for those products
p affected by the run-modes altered. Furthermore, only the time periods after the
actual change in �k need to be considered, since a change in start-ups at time period
t̂t only affects inventory levels in periods t � t̂t.

4.3. Tabu lists
The number of solutions to investigate in Ncand(�

k,Sk) is reduced by using two
types of tabu lists associated with different (move) attributes. The first type of tabu
list ensures that an element of �k that has switched value from one to zero, cannot
switch back again during the next Lk number of iterations and applies to all sub-
neighbourhoods except Nremove(�

k). The tabu list length, Lk, is implemented to vary

455A tabu search heuristic

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
9
:
1
1

2
5

S
e
p
t
e
m
b
e
r

2
0
0
9

randomly and is obtained by generating a uniformly distributed number between
0.5l k and 2l k in each iteration, where l k is a parameter used for deciding the tabu list
length. Two approaches for deciding the length l k were tested. In the first approach
the length l k is assigned the constant value l st which in turn is decided by the size of
the problem. In the second approach, referred to as using the varying length feature,
the parameter l k varies between 0.25 l st and 1.5l st. After the initial phase of the tabu
search is completed, l k is assigned the value 0.25l st. Then, it is increased by one unit
every 20th iteration until l k ¼ 1.5l st, when it is reset to the value 0.25l st. With this
approach, the heuristic oscillates between periods whose emphasis is on intensifica-
tion and periods whose emphasis is on diversification.

The second type of tabu lists implemented is associated with a specific sub-
neighbourhood. The tabu list associated with Nmove(�

k) does not allow the reverse
move. For moves associated with Nswitch(�

k), a run-mode which was put before
another run-mode in one iteration using Nswitch(�

k) cannot be put later during some
subsequent iterations when using Nswitch(�

k). The neighbourhood Nadd(�
k) is treated

in the same way by making sure that the same run-mode is not added twice in a row.
Based on computational experience, the lengths of the second type of tabu lists are
set to four times the periodicities of using the associated sub-neighbourhoods.

In our implementation no aspiration criterion is used to override the tabu moves,
not even if a solution is better than the best solution found so far. This strategy
reduces the number of necessary solution evaluations.

4.4. Summary: Main features of the tabu search
The tabu search presented includes several features, which are used for directing

the search. These features are:

. forced, which limits the use of the neighbourhood Ne/l at iterations when
another (more complex) sub-neighbourhood is utilized;

. reduced, which implies that the neighbourhood is sampled;

. locked, which locks a part of the solution;

. dynamic penalty, which allows the penalty level (P(Sk)) to vary;

. varying length, which makes the tabu list length (l k) vary.

5. Computational experiments

In this section we report on the results obtained when using the tabu search
heuristic on problem instances based on real-life scheduling scenarios from Nynas.
The purpose is to evaluate the performance of our proposed tabu search heuristic
and to illustrate what features make a difference to its performance. When measuring
the performance of the heuristic, we will primarily use the modified objective func-
tion (cm(�best,S)) for the best solution found (�best). Recall that infeasible solutions
with respect to [SCH] are of interest for the planners at the refinery, since we are
penalizing with respect to constraints which are somewhat soft.

5.1. Problem scenarios
Three different scenarios are used for the computational tests. Scenarios 1 and 2

are based on scheduling situations at Nynas covering a planning horizon of one
month, while Scenario 3 covers two months. Scenario 3 represents what might be
of interest in the future if the planning horizon is extended and the accuracy in the
forecasts of the demand is improved. Scenario 1 includes fewer products compared

456 J. A. Persson et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
9
:
1
1

2
5

S
e
p
t
e
m
b
e
r

2
0
0
9

to the other two scenarios, and represents the planning situation where the planner

has reduced the problem by ignoring some products and run-modes. This reduction

has been discussed with planners at the refinery. Scenarios 2 and 3 include negative

production costs (c
y
mt), sequence dependent changeover costs (cseqmm̂mt), and a set of

limited common resources (R), whereas Scenario 1 does not include these features.

The penalties for violating inventory level constraints (5) and resource constraints (7)

are set to 0.5 and 100, respectively, which is equivalent to letting P(S) ¼ PI(S) ¼

PI
ðSÞ be equal to 0.5 in formula (11) and PE

r ðSÞ be equal to 100 in formula (12).

Basic characteristics of the three scenarios are given in table 1. In the number of

Products we include crude oil, input products (components) and end-products.

Processing units denotes the number of units considered in the different scenarios.

The number of Run-modes includes both production modes and stop-modes. We also

give details of the number of run-modes in each processing unit (Run-modes per unit).

Further, table 1 shows the number of Resources, Time periods, and Start-up

variables (smt) in the mathematical formulation. For Scenarios 1 and 2, we generated

19 and 10 problem instances, respectively, where the demand patterns were ran-

domly generated to conform to the real situation at the refinery. The randomly

generated problem instances were in some cases slightly modified in order to

obtain problems with at least one feasible solution with respect to [SCH]. The

original demand patterns were also included in the set of problem instances and

referred to as the original instance. In total we have 20, 11 and 1 problem instances

for Scenarios 1, 2 and 3, respectively. No additional problem instances were gener-

ated for Scenario 3, since testing the heuristic on this scenario is time consuming and

no strong lower bound on the objective function can be obtained for this rather large

scenario. The start-up costs for the 20 problem instances of Scenario 1 were set at

two different levels, one high and one low (including the original instance), where the

lower level was equal to 25% of the higher. Additional details of the scenarios and

generated problem instances can be found in Persson (2002).

In the last row of table 1, we present the average of the best-known lower bound

(LBDSCH) of the total cost for the given scenarios for formulation [SCH]. For all

instances of Scenarios 1 and 2, the lower bound is less than 4% from a known

feasible solution to [SCH]; and in 16 problem instances of Scenario 1, the optimal

solutions to [SCH] are known. For Scenario 3, the gap between the best-known

solution and the lower bound is 10%. These bounds were obtained by using a

branch-and-bound procedure combined with valid inequalities and extensive

CPU times, of up to four days (for details of this approach see Persson 2002).

Characteristics Scenario 1 Scenario 2 Scenario 3

Products (|P|) 13 23 24
Processing units (|Q|) 3 3 4
Run-modes (|M|) 14 23 23
Run-modes per unit (|Mq|) 7/3/4 12/4/7 7/6/7/3
Resources (|R|) 0 2 2
Time periods (|T|) 31 31 61
Start-up variables 434 713 1401
Average Lower bound (LBDSCH) 1531 1949 3956

Table 1. Characteristics of the test scenarios.

457A tabu search heuristic

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
9
:
1
1

2
5

S
e
p
t
e
m
b
e
r

2
0
0
9

In that method of computing the lower bounds, the sequence-dependent changeover
costs (cseqmm̂mt) and resource constraints had to be ignored.

In the tests, it is assumed that no specific starting solution is available. We assume
that the initial run-modes are known, i.e. it is known which run-modes are used at
t ¼ 0. We construct the start solution �0, by letting the initial run-modes be used
throughout the whole planning horizon.

5.2. Calibration of the parameters
In this section, we present experimental results obtained when using different

parameter settings. The aim is not to find the optimal parameter setting, but
rather to identify reasonably good parameter values. Further, we want to find out
whether the performance is highly sensitive to a particular parameter setting or not.

In table table 2, the values of the different parameters are presented. The
sub-neighbourhood periodicities are based on empirical observations. The penalty
parameter �2 is equal to 1 for Scenario 1 and to 0.5 for Scenarios 2 and 3. We use
different values of �2 in order to compensate for the different start-up costs, which
are slightly lower on average for the problem instances of Scenario 1. The initial
penalty factors PðS0

Þ and PE
r ðS

0
Þ are set to 0.5 and 100, respectively.

The parameter l st is used for determine the tabu list length at each iteration.
Limited computational experiments indicated that the values 16, 20, and 24 are
reasonable values of l st for the three different scenarios. For the three scenarios,
this corresponds to computing l st according to 0:6ðjPjjMjjT jÞ1=3 þ 5 where jPj, jMj,
and jT j represent the total number of products, run-modes, and time periods,
respectively.

The neighbourhood Nadd(�
k) is used in every third iteration during the initial

phase. This is reasonable, since in our tests the heuristic is started with a solution
including no start-ups at all. We let the initial phase last for 3l st iterations.

In the computational tests the heuristic is terminated after a specified number
of solution evaluations (denoted Ke). By using this termination criterion (and not
the iteration number K), we ensure that each test run on the same problem instance
will require almost identical CPU times given that Ke is identical. The reason for
this is that a major part of the CPU time is required for evaluating solutions. For
Scenario 1, the tabu search heuristic will be stopped after 75 000 solution evalua-
tions, i.e. Ke

¼ 75 000. For Scenarios 2 and 3, we allow 150 000 and 300 000 solution
evaluations, respectively. At these numbers of Ke, the heuristic is performing

Parameters Value

pe/l 1
pmove 43
pswitch 41
padd 49
premove 45
�1 0.99
�2 0.5/1
P(S0) 0.5

PE
� ðS

0
Þ; � 2 R 100

R f 0.4

Table 2. Values of the parameters used in the heuristic.

458 J. A. Persson et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
9
:
1
1

2
5

S
e
p
t
e
m
b
e
r

2
0
0
9

reasonably well, but can still be improved. In all the computational tests, the CPU

time is given for a Sun Ultra Sparc, 300MHz. The 75 000 solution evaluations for
Scenario 1 correspond approximately to 4400 iterations and 2min of CPU time.

Correspondingly, 7 and 15CPUmin are utilized for each test run for Scenarios 2

and 3.
When half of the solution evaluations have been completed, the search is

restarted with the best solution found so far, i.e. �k �best. This is also done

when there are 5000 solution evaluations remaining. This feature of restarting is
included since the surrounding of solution �best might contain even better solutions,

which might be found at another restart when the tabu lists are different compared to
those the previous time �best was found. Further, when using the feature reduced,

good solutions might have been missed the previous time the solution was found.

First we study the effect on the performance when using different sub-
neighbourhood periodicities. It was noted that the performance was relatively insen-

sitive to rather large changes in the different sub-neighbourhood periodicities given

in table 2. The performance appears almost insensitive to the individual changes
of the periodicity associated with the neighbourhood Nmove(�

k) and Nswitch(�
k). A

possible explanation is that these two types of neighbourhoods can to a large extent

be replaced by each other and by the neighbourhoods Nadd(�
k) and Nremove(�

k).
However, if none of the neighbourhoods Nmove(�

k) and Nswitch(�
k) are used, i.e.

the numbers of pmove and pswitch are very large, the performance deteriorates.
In figure 2, the result of using different periodicities padd and premove, when using

the heuristic on the original instance of Scenario 1, is plotted. In the figure, the x-axis

is given with a logarithmic scale and shows the periodicity for premove. The periodi-
city for padd is set to 49/45 times the periodicity of premove (representing the relation

between the original values). The plotted line, cm(�best, S
0), represents the average

modified objective function value obtained for 10 test runs at each setting for the
original instance of Scenario 1. The upper plotted line shows the average of the sum

of the modified objective function value and the standard deviation cm(�best, S
0)þ �.

10
0

10
1

10
2

10
3

10
4

1400

1450

1500

1550

1600

1650

1700

Remove and Add Periodicity (p
remove

)

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

c
m

(ξ
best

,S
0
) + σ

c
m

(ξ
best

,S
0
)

c
m

(ξ
bestever

,S
0
)

Figure 2. Performance for different add and remove periodicities, plotted using 10 test tuns
for each setting on the original instance of Scenario 1.

459A tabu search heuristic

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
9
:
1
1

2
5

S
e
p
t
e
m
b
e
r

2
0
0
9

These two values are compared to the best-known solution value to [R-SCH], that

is cm(�best–ever,S
0). The dotted vertical line gives the periodicity suggested in this

implementation (premove ¼ 45).

The computational tests indicate that the performance is relatively insensitive

to the choice of these periodicities, at least when using periodicities greater than

10 and smaller than 100. Outside this range the performance sometimes deteriorates

at the same time as the spread in the results increases. Additionally it has been

observed that deterioration of the performance occurs if one or two of the sub-

neighbourhoods are not used at all (i.e. the periodicities are set to a large number).

Additional tests of using different values of periodicities have been performed.

Two tests of using a periodicity of 44 for pmove, pswitch, padd and premove add

and premove have been carried out. In the first, all the sub-neighbourhoods were

used simultaneously every 44th iteration. In the second test, the usage of the sub-

neighbourhoods were phase shifted such that one of these neighbourhoods were used

every 11th iteration. Additionally tests of including sub-neighbourhoods randomly

with a probability corresponding to the suggested periodicity of usage were carried

out. None of these tests showed on an improvement of the performance of the

heuristic. Instead its performance deteriorated significantly for the case were the

sub-neighbourhoods were used simultaneously every 44th iteration.

Further, the performance is relatively insensitive to changes in the parameter l st,

which is used for deciding the tabu list length. However, extreme values of l st affect

the performance. As an example, we present graphically in figure 3 some results of

the performance obtained when using different values of l st on the original instance

of Scenario 1. The dotted vertical line corresponds to the value l st ¼ 16, which was

used for this scenario.

We also carried out additional experiments with different values of the parameter

�2 (used for deciding the penalty factor P(Sk)) and with different constant values of

P(Sk). The test indicated that the setting of the parameter �2 has some effect on

0 10 20 30 40 50 60 70 80

1400

1450

1500

1550

1600

1650

1700

Tabu List Length (lst)

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

c
m

(ξ
best

,S
0
) + σ

c
m

(ξ
best

,S
0
)

c
m

(ξ
bestever

,S
0
)

Figure 3. Performance for different lengths of tabu list plotted using 10 test runs for each
setting on the original instance of Scenario 1.

460 J. A. Persson et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
9
:
1
1

2
5

S
e
p
t
e
m
b
e
r

2
0
0
9

the performance of the heuristic. For Scenario 2 and 3, we observed that it is favor-
able to set the value of �2 to 0.5.

Overall, our experiments confirm that the parameters can be allowed to vary
relatively widely before the performance significantly deteriorates. Hence, the results
show the robustness of the heuristic with regard to the choice of the parameters used
for directing the search.

5.3. Effect of the different features on the performance of the heuristic
Next we study the impact of removing different combinations of the features

presented in Section 4. We perform these tests in order to assess which features
are important for the performance of the heuristic.

First we study the behaviour of the heuristic when all the features are excluded,
i.e. the neighbourhood Ne/l (�

k) is used in every iteration, no sampling is utilized, no
part of the solution space is locked, and both the penalty level and the length of the
tabu list are kept constant. The results for this case are presented in the first row of
table 3. Then we include exclusively one feature at a time and study the change in
performance and present the results in the following rows of table 3. For each
version, we give the average value of the modified objective function for the best
solution found, cm(�best, S

0), based on 20 runs. In table 3, these values are in turn
based on the average results for the 20 constructed problem instances of Scenario 1,
therefore the notation ‘Scenario 1 (1–20)’. Hence, each row of the table represents
the testing of the heuristic 20 times on 20 different problem instances. In the column
‘� ’, we display the average standard deviation of cm(�best, S

0) for each setting, for the
20 test runs. The average level of infeasibility for the best solution found is also
included in the table, i.e. the value of TP(�best,S

0) ¼ TPI(�best,S
0) þTPE(�best,S

0) is
presented. In the last column, we show the fraction in percentage of the test runs,
%feas, which produced a feasible solution with respect to [SCH]. In the first row of
table 4, we study the objective function value when all the features are included, and
in subsequent rows we exclude one feature at a time.

The analysis of including or removing each of the features is also performed for
Scenarios 2 and 3. The results are presented in tables 5–8.

The results indicate that by including all the features we always obtain better
performance than by not including any of the features. We also note that by includ-
ing one feature the performance improves or approximately remains the same; see
tables 3, 5 and 7. When we remove one feature, the performance of the heuristic
worsens or approximately remains the same; see tables 4, 6 and 8. We also note that
if we exclude only one of the features reduced or locked, the performance significantly

Scenario 1 (1–20)

Feature included cm(�best, S
0) � TP (�best,S

0) %feas

None 1827 360 259 66
Only Forced 1756 174 192 70
Only Reduced 1695 199 133 75
Only Locked 1594 62 31 90
Only Dynamic penalty 1758 173 192 68
Only Varying length 1812 191 245 65

Table 3. Tests of including no or just one feature for Scenario 1 (1–20).

461A tabu search heuristic

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
9
:
1
1

2
5

S
e
p
t
e
m
b
e
r

2
0
0
9

Scenario 3

Feature included cm(�best,S
0) � TP (�best,S

0) %feas

None 8125 2790 3683 0
Only Forced 8879 3456 4445 0
Only Reduced 5473 748 1053 15
Only Locked 6064 996 1621 0
Only Dynamic penalty 8350 2260 3922 0
Only Varying length 7860 2843 3410 0

Table 7. Tests of including no or just one feature for Scenario 3.

Scenario 1 (1–20)

Feature included cm(�best,S
0) � TP (�best,S

0) %feas

All 1569 45 13 93
All but Forced 1577 46 17 89
All but Reduced 1599 68 35 85
All but Locked 1707 203 145 72
All but Dynamic penalty 1580 53 21 91
All but Varying length 1569 38 13 92

Table 4. Tests of including all features or all but one feature for Scenario 1 (1–20).

Scenario 2 (1–11)

Feature included cm(�best,S
0) � TP (�best,S

0) %feas

None 2178 193 145 71
Only Forced 2165 143 127 75
Only Reduced 2073 136 78 86
Only Locked 2082 88 48 85
Only Dynamic penalty 2162 142 142 63
Only Varying length 2196 176 161 66

Table 5. Tests of including no or just one feature for Scenario 2 (1–11).

Scenario 2 (1–11)

Feature included cm(�best,S
0) � TP (�best,S

0) %feas

All 2012 28 24 89
All but Forced 2007 27 25 91
All but Reduced 2067 93 50 83
All but Locked 2040 114 58 82
All but Dynamic penalty 2013 30 18 96
All but Varying length 2028 37 23 94

Table 6. Tests of including all features or all but one feature for Scenario 2 (1–11).

462 J. A. Persson et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
9
:
1
1

2
5

S
e
p
t
e
m
b
e
r

2
0
0
9

worsens. These two features also appear to significantly improve the performance if
exclusively included in the heuristic.

5.4. Performance of the heuristic
In this section, we study the impact on the performance of the heuristic when

we let it run for different CPU times by using different values of the parameter Ke

(total number of evaluations). In figures 4–6, we study the performance of the
heuristic when it performs 20 test runs with different values of Ke for each
problem instance. Based on these runs, we present the average modified objective
function, cm(�best, S

0), for each scenario. As a comparison, we present the average
of the modified objective function for the best-ever found solution (best-known
solution), denoted cm(�best–ever, S

0). We also present the objective function value
of the average best found feasible solution of each run with respect to [SCH]
(c(�f–best)). In the lower parts of the figures, we display the average fraction of the
runs which produced a feasible solution. We also plot the average lower bounds
(LBDSCH) of the [SCH] formulation for the corresponding scenario.

In figures 4–6 a trend can be observed which indicates that larger numbers of Ke

give better performance. Hence, the suggested heuristic is not a simple local search
procedure, but the tabu lists and other features allow the heuristic to escape local
optimal solutions. The tabu search heuristic finds solutions which on average have
objective function values which are relatively close to the lower bound of [SCH], at
least for Scenarios 1 and 2. Also the average best solution found (cm(�best, S

0)) in
each run is relatively close to the average best-ever found solution (cm(�best–ever, S

0).
The fraction of runs finding a feasible solution for Scenario 3 is rather low; one
explanation is that the long time horizon makes it difficult for the heuristic to find
a solution, which in all aspects is feasible with respect to [SCH]. Further, whenever
a feasible solution is found it has a rather good objective function value compared to
cm(�best, S

0). The reason for this is probably that the penalty cost parameters are
rather high and give a large impact on the average objective function (cm(�best, S

0)) in
those runs when no feasible solution was found.

5.5. Comparison with branch-and-bound
In the following we compare the performance of the tabu search heuristic with

the performance obtained when using the branch-and-bound (B&B) method
presented in Persson (2002). In that thesis, valid inequalities are added to problem
[SCH] in order to improve the lower bound of the linear relaxation, and thereby
decrease the number of solutions which are enumerated by the B&B procedure.

Scenario 3

Feature included cm(�best,S
0) � TP (�best,S

0) %feas

All 5187 909 763 5
All but Forced 5660 1040 1246 0
All but Reduced 6006 932 1555 0
All but Locked 5437 861 1008 5
All but Dynamic penalty 5393 738 988 5
All but Varying length 5191 733 800 10

Table 8. Tests of including all features or all but one feature for Scenario 3.

463A tabu search heuristic

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
9
:
1
1

2
5

S
e
p
t
e
m
b
e
r

2
0
0
9

In Persson (2002) it was noted that using B&B on a model without valid inequalities

was not very successful on this type of problem. The valid inequalities developed can

only be used together with formulation [SCH] and not [R-SCH]. Thus we can only

test the B&B approach together with formulation [SCH] when using the B&B

approach, sequence-dependent costs and resource constraints are ignored, otherwise

the model becomes too large for using a B&B solution procedure. The purpose of

this comparison is to check if a B&B approach can compete with the tabu search

heuristic in finding good schedules in reasonable time for this problem.

0 0.5 1 1.5 2

x 10
5

1450

1500

1550

1600

1650

1700

1750

Ke (Number of Evaluations)

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

c
m

(ξ
best

,S
0
)

c
m

(ξ
bestever

,S
0
)

c(ξ
f best

)

LBD
SCH

0.57
0.74

0.79
0.87

0.91
0.93

0.95
0.96

0.97
0.97

0.98
0.99

Figure 4. The average performance for different Ke for 20 instances of Scenario 1.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

1850

1900

1950

2000

2050

2100

2150

2200

Ke (Number of Evaluations)

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

c
m

(ξ
best

,S
0
)

c
m

(ξ
bestever

,S
0
)

c(ξ
f best

)

LBD
SCH

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

1850

1900

1950

2000

2050

2100

2150

2200

Ke (Number of Evaluations)

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

c
m

(ξ
best

,S
0
)

c
m

(ξ
best ever

,S
0
)

c(ξ
f best

)

LBD
SCH

0.65
0.85

0.91
0.96

0.96
0.98

0.98
0.99

Figure 5. The average performance for different Ke for 11 instances of Scenario 2.

464 J. A. Persson et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
9
:
1
1

2
5

S
e
p
t
e
m
b
e
r

2
0
0
9

In table 9, we compare the solution approaches for the problem instances of the

three different scenarios. Under the heading ‘Tabu search’, we present the CPU time

inmin for each test run, the average modified objective function value (cm(�best,S
0),

and the average standard deviations of these values (�), based on 20 test runs for

each problem instance. We also present the average value of the penalty term

(P(�best,S
0)) and the average objective function value of the best solution found

(c(�f–best)) with respect to formulation [SCH]. Within parentheses we also present

for cm(�best,S
0) and P(�best,S

0) the best result obtained from any of the 20 test runs.

The average value of c(�f–best) is based on those test runs when a feasible solution was

found and we give the percentage of such runs in the table (%feas). The results are

given for 150 000, 300 000, and 600 000 solution evaluations, respectively, for the

three scenarios. Other parameters are set as in previous tests (see table 2). In the

table, we also include average values of all problem instances for Scenarios 1 and 2,

which is presented in the rows ‘1,(1–20)’ and ‘2,(1–11)’.

Under the heading ‘Branch-and-bound’, the results are given when using the

method suggested in Persson (2002). We used CPLEX 6.5 with its default setting

and terminated when the specified CPU time or memory allowance was exceeded.

The LBDSCH presented is the average lower bound obtained from the test runs and

it is a lower bound to formulation [SCH]. (After these tests were completed, we

were able to improve the lower bounds additionally by using a faster computer

and longer computation times; these results were presented in table 1). V represents

the best feasible solution found during the branch-and-bound process, but with the

sequence-dependent costs and resource constraints ignored, and hence it is not a

true upper bound for Scenarios 2 and 3.

The tabu search heuristic finds on average solutions with lower costs in less CPU

time. One important reason for this is that the branch-and-bound procedure was

unable to find a feasible solution at all during the specified CPU time. Note that the

branch-and-bound solution procedure was terminated due to time or memory

0 1 2 3 4 5 6 7 8

x 10
5

3600

3800

4000

4200

4400

4600

4800

5000

5200

5400

5600

5800

Ke (Number of Evaluations)

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

c
m

(ξ
best

,S
0
)

c
m

(ξ
bestever

,S
0
)

c(ξ
f best

)

LBD
SCH

0
0.05

0.05
0.2

0.05
0.1

0.2
0.25

0.1
0.1

0.15
0.35

0.15
0.05

0.15
0.45

Figure 6. The average performance for different Ke for 1 instance of Scenario 3.

465A tabu search heuristic

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
9
:
1
1

2
5

S
e
p
t
e
m
b
e
r

2
0
0
9

requirements, hence, relatively large gaps between V and LBD remained at termina-

tion.

It can be noticed that the average penalty cost, P(�best,S
0), is relatively small for

all the solutions obtained with the tabu search heuristic. For example, for Scenario 1,

an average of 7 was obtained, which corresponds to that at most 7/0.5 ¼ 14 tonnes

of products are not within specified limits (since P(S0) ¼ 0.5). This should be

compared to the 120 000 tonnes of products delivered on average in problem

instances of Scenario 1; and 140 000 and 260 000 tonnes for Scenarios 2 and 3,

respectively. If the positive values of P(�best, S0) are assumed to be caused by

resource constraint violations, the infeasibility can also be regarded as rather low.

Hence, the solutions �best are typically ‘almost feasible’ with respect to [SCH], which

is a desirable feature.

Scenario
Tabu search Branch-and-bound

instance CPU cm(�best,S
0) � P(�best,S

0) c(�f–best) %feas CPU LBDSCH �

1, 1 4 1576 (1568) 2 0 1576 (1568) 100 4 1568 1568
1, 2 4 1722 (1708) 13 0 1722 (1708) 100 20 1708 1708
1, 3 4 1801 (1752) 66 30 1779 (1752) 85 18 1750 1750
1, 4 4 1781 (1774) 9 0 1781 (1774) 100 12 1770 1770
1, 5 4 1648 (1642) 12 8 1650 (1642) 100 180 1613 1940
1, 6 4 1825 (1801) 28 1 1830 (1801) 100 15 1801 1801
1, 7 4 1773 (1754) 41 17 1764 (1754) 95 10 1754 1754
1, 8 4 1749 (1732) 9 11 1756 (1752) 100 35 1752 1752
1, 9 4 1816 (1752) 57 43 1882 (1756) 95 16 1751 1751
1, 10 4 1752 (1726) 13 10 1756 (1726) 100 10 1724 1724
1, 11 4 1337 (1335) 4 0 1337 (1335) 100 30 1335 1335
1, 12 4 1346 (1334) 8 0 1346 (1334) 100 180 1334 1334
1, 13 4 1314 (1288) 12 0 1314 (1288) 100 180 1248 1282
1, 14 4 1299 (1274) 16 0 1299 (1274) 100 14 1274 1274
1, 15 4 1409 (1393) 7 0 1409 (1393) 100 97 1392 1392
1, 16 4 1343 (1337) 8 0 1343 (1337) 100 180 1321 1460
1, 17 4 1438 (1420) 8 14 1455 (1446) 80 152 1394 1584
1, 18 4 1338 (1312) 20 0 1338 (1312) 100 1 1307 1307
1, 19 4 1356 (1336) 16 1 1358 (1336) 100 70 1327 1327
1, 20 4 1465 (1449) 14 9 1463 (1449) 90 153 1438 1438

1, (1–20) 4 1554 (1534) 18 7 1558 (1537) 97 69 1528 1563

2, 1 14 2074 (2063) 6 46 2104 (2065) 100 360 1961 2053
2, 2 14 2051 (2019) 37 52 2068 (2019) 100 360 1975 2045
2, 3 14 1966 (1942) 23 3 1967 (1942) 100 278 1941 1941
2, 4 14 1959 (1923) 21 9 1975 (1923) 90 360 1902 1921
2, 5 14 2153 (2137) 14 9 2174 (2137) 100 360 2078 2147
2, 6 14 1803 (1783) 12 90 1878 (1790) 90 54 1765 1765
2, 7 14 1855 (1808) 32 1 1865 (1816) 100 360 1783 2291
2, 8 14 2042 (2021) 21 6 2046 (2021) 100 244 1991 1991
2, 9 14 2178 (2140) 16 33 2202 (2164) 100 360 2064 2346
2, 10 14 1990 (1966) 22 2 1992 (1966) 100 19 1946 1946
2, 11 14 1887 (1878) 18 7 1922 (1910) 100 56 1898 1898

2, (1–11) 14 1996 (1971) 20 24 2017 (1978) 98 256 1937 2031

3 30 4620 (4353) 189 207 4475 (4423) 35 2600 3956 –

Table 9. Results obtained by the tabu search and by a branch and bound with
valid inequalities.

466 J. A. Persson et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
9
:
1
1

2
5

S
e
p
t
e
m
b
e
r

2
0
0
9

Table 9 indicates that the standard deviation of the objective function value is
relatively high for some problem instances (in particular this is the case for Scenario
3). The high value mainly stems from one or two fairly ‘bad runs’ out of the 20 test
runs.

6. Conclusions and future research

We have studied how a tabu search heuristic can be utilized for finding good
solutions to the process scheduling problem at an oil refinery. It has been shown that
the decision problem can be formulated as a mixed integer optimization model. For
a solution (a schedule) we define a number of sub-neighbourhoods. A strategy for
utilizing these sub-neighbourhoods is suggested, which makes the definition of the
neighbourhood vary.

We have introduced a number of features, which all affect the intensification
and diversification of the search. Most of these features significantly improve the
performance of the heuristic. In particular, it has been shown that sampling of
the neighbourhood is important for the performance of the heuristic. Intensifying
the search around the current solution by partially locking the solution appears also
to be important for the performance.

For the CPU times used in the computational tests, the tabu search heuristic
performed better than another tested solution approach based on (incomplete)
branch-and-bound combined with the generation of valid inequalities. Further, the
lower bounds obtained by using the branch-and-bound solution approach allowed
us to verify that the tabu search heuristic performed relatively well on the tested
scenarios.

The tabu search heuristic can be enhanced by implementing dynamic tuning of
the parameters. Another potential way of improving the heuristic is to explore
alternative strategies for utilizing the sub-neighbourhoods. In our experiments we
considered strategies of diversification by starting from the current iterate solution
and then by using the tabu list during the diversification phase. Another approach
would be to diversify with the help of constructive heuristics, where information
about previous good solutions is utilized. Such ideas have been explored recently
in Gendron et al (2002) for a network design problem.

Appendix A: The optimization model

Let T denote the set of time periods, and let Q denote the set of processing units
at the refinery. The set of possible run-modes at processing unit q, q 2 Q, is denoted
by Mq, and the union of all possible run-modes at all processing units is denoted by
M. The set of resources, consumed when using different run-modes, is denoted R.
Finally, let P denote the set of products considered in the model. Below we present
input data to the model, where p 2 P, t 2 T , r 2 R, and m, m̂m 2M.

cIpt ¼ inventory cost for product p at time period t.
cseqmm̂mt ¼ changeover cost for changing from run-mode m to m̂m in time period t.
csmt ¼ start-up cost for run-mode m in time period t.
c
y
mt ¼ production cost for using run-mode m in time period t.
apm ¼ production yield of product p when operating run-mode m.
bpm ¼ consumption of product p when operating run-mode m.
dpt ¼ demand for product p in time period t.

467A tabu search heuristic

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
9
:
1
1

2
5

S
e
p
t
e
m
b
e
r

2
0
0
9

Ipt ¼ lower limit on the inventory level for product p at time period t.
�IIpt ¼ upper limit on the inventory level of product p at time period t.
gmr ¼ the use of resource r when using run-mode m.
�EEr ¼ the available amount of resource r in any time period.

We also define the following variables, where p 2 P, t 2 T , and m, m̂m 2M.
xpt ¼ production of product p during time period t.
zpt ¼ consumption of product p during time period t.
Ipt ¼ inventory level of product p at the end of time period t.

ymt ¼ 1 if run-mode m is used in time period t,
0 otherwise.

n

s
seq
mmt ¼ 1 if run-mode m is changed to m̂m between time period t�1 and t,

0 otherwise.

n

smt ¼ 1 if run-mode m is started in time period t ,
0 otherwise.

n

The following mixed integer linear programming model for the process schedul-
ing problem can then be formulated.

½SCH�min
X
t2T

X
p2P

cIptIptþ
X
t2T

X
m2M

X
m̂m2M:m̂m 6¼m

c
seq
mm̂mt s

seq
mm̂mt

þ
X
t2T

X
m2M

csmtsmt þ
X
t2T

X
m2M

c
y
mtymt, ð13aÞ

xpt �
X
m2M

apmymt ¼ 0, p 2 P, t 2 T , ð13bÞ

zpt �
X
m2M

bpmymt ¼ 0, p 2 P, t 2 T , ð13cÞ

Ip, t�1 þ xpt � zpt � dpt ¼ Ipt, p 2 P, t 2 T , ð13dÞ

Ipt � Ipt � �IIpt, p 2 P, t 2 T , ð13eÞX
m2Mq

ymt ¼ 1, q 2 Q, t 2 T , ð13fÞ

sseqmm̂mt þ 1 � ym, t�1 þ ym̂mt, q 2 Q,m 6¼ m̂m 2Mq, t 2 T , ð13gÞ

ym, t�1 þ smt � ymt, m 2M, t 2 T , ð13hÞX
m2M

gmrymt �
�EEr, r 2 R, t 2 T , ð13iÞ

Ipt, xpt, zpt � 0, p 2 P, t 2 T , ð13jÞ

sseq
mm̂mt
2 f0, 1g, m, m̂m 2M, t 2 T , ð13kÞ

ymt, smt 2 f0, 1g, m 2M, t 2 T : ð13lÞ

Appendix B: Examples of the sub-neighbourhoods

In this section we first introduce an example of a processing schedule for a small
problem. Then we use that example for illustrating the different neighbourhoods
used in the tabu search heuristic.

Example 1. Consider the scheduling of a single processing unit during six time
periods in which three run-modes M0, M1, and M2 can be used. A schedule (or a
solution) represented by the variables ymt is given in table 10, where ym0 ¼ f0, 0, 1g are

468 J. A. Persson et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
9
:
1
1

2
5

S
e
p
t
e
m
b
e
r

2
0
0
9

given and represent the initial state of the processing unit (illustrated in the first row

for t ¼ 0). This particular solution says that run-mode M2 is used in period 1, then

run-mode M1 is started in time period 2 and used until run-mode M0 is started in

time period 5.

The schedule of the example can also be expressed in variables smt, which is given

in the left part of table 11. We now illustrate the sub-neighbourhood Ne/l (�
k). Let the

solution of the example above be our current iterate solution �k. The solutions in the

set Ne/l (�
k) are illustrated in the right part of table 11, where the solutions are

represented by the variables smt. A solution of Ne/l (�
k) is obtained by changing

one of the four ‘0/1’ positions from zero to one and the nearby ‘1/0’ from one to zero.

Let the candidate move underlined in table 11 be selected. The next iterate

solution, �kþ1, is illustrated in table 12, in which bold face highlights the changes

compared to the previous solution, �k.
The sub-neighbourhood Nmove(�

k) is exemplified in table 13 for the solution of

the example, where a ‘0/1’ may change from zero to one. Since we do not allow the

start-up of a run-mode that is already in use or the start-up of a run-mode that is

started next, there is only a single solution in Nmove(�
k) as illustrated in table 13.

The sub-neighbourhood Nswitch(�
k) is exemplified in table 14, which is based on

the schedule of the example above.

The sub-neighbourhood Nadd(�
k) is illustrated in table 15, based on �k of the

example. Positions in the schedule where start-ups can be performed are illustrated

with the notation ‘0/1’ in table 15.

�k, (smt)

t M0 M1 M2

1 0 0 0
2 0 1 0
3 0 0 0
4 0 0 0
5 1 0 0
6 0 0 0

Ne/l(�
k)

M0 M1 M2

0 0/1 0
0 1/0 0
0 0/1 0
0/1 0 0
1/0 0 0
0/1 0 0

Table 11. Sub-neighborhood Ne/l(�
k) illustrated for the solution �kof the example.

ymt

t M0 M1 M2

0 0 0 1
1 0 0 1
2 0 1 0
3 0 1 0
4 0 1 0
5 1 0 0
6 1 0 0

Table 10. An example of a solution expressed in variables ymt.

469A tabu search heuristic

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
9
:
1
1

2
5

S
e
p
t
e
m
b
e
r

2
0
0
9

�k (smt)

t M0 M1 M2

1 0 0 0
2 0 1 0
3 0 0 0
4 0 0 0
5 1 0 0
6 0 0 0

Nmove (�
k)

M0 M1 M2

0 0 0
0 1 0
0 0 0
0 0 0
1/0 0 0/1
0 0 0

Table 13. Sub-neighborhood Nmove(�
k) illustrated for the solution �k of the example.

�k (smt)

t M0 M1 M2

1 0 0 0
2 0 1 0
3 0 0 0
4 0 0 0
5 1 0 0
6 0 0 0

Nswitch (�k)

M0 M1 M2

0 0 0
0/1 1/0 0
0 0 0
0 0 0
1/0 0/1 0
0 0 0

Table 14. Sub-neighbourhood Nswitch (�k) illustrated for the solution �k of the example.

�k, (smt)

t M0 M1 M2

1 0 0 0
2 0 1 0
3 0 0 0
4 0 0 0
5 1 0 0
6 0 0 0

Nadd (�k)

M0 M1 M2

0/1 0 0
0 1 0
0 0 0/1
0 0 0/1
1 0 0
0 0/1 0/1

Table 15. Sub-neighbourhood Nadd (�k) illustrated for the solution �k of the example.

�kþ1, (smt)

t M0 M1 M2

1 0 0 0
2 0 0 0
3 0 1 0
4 0 0 0
5 1 0 0
6 0 0 0

Table 12. The solution �kþ1 expressed in the start-up variables smt.

470 J. A. Persson et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
9
:
1
1

2
5

S
e
p
t
e
m
b
e
r

2
0
0
9

References

AMOS, F., RÖNNQVIST, M. and GILL, G., 1997, Modelling the pooling problem at the
New Zealand refining company. Journal of the Operational Research Society, 48,
767–778.

BALLINTIJN, K., 1993, Optimization in refinery scheduling: Modeling and solution. In T. A.
Ciriani and R. C. Leachman, (eds), Optimization in Industry (Chichester: John Wiley),
chapter 10, pp. 191–199.

CONSTANTINO, M., 1995, A Polyhedral Approach to Production Planning Models: Start-Up
Costs and Times, Upper and Lower Bounds on Production. Ph.D. thesis, Faculté des
Science, Université Catholique de Louvain, Belgium.

CONSTANTINO, M., 1996, A cutting plane approach to capacitated lot-sizing with start-up costs.
Mathematical Programming, 75, 353–376.

COXHEAD, R. E., 1994, Integrated planning and scheduling systems for the refining industry.
In T. A. Ciriani and R. C. Leachman, (eds), Optimization in Industry 2 (Chichester:
John Wiley), chapter 14, pp. 185–199.

DEWITT, C. W., LASDON, L. S., WAREN, A. D., BRENNER, D. A. and MELHEM, S. A., 1989,
OMEGA: An improved gasoline blending system for Texaco. Interfaces, 19, 85–101.

DREXL, A. and KIMMS, A., 1997, Lot sizing and scheduling – survey and extensions. European
Journal of Operational Research, 99, 221–235.

GENDRON, B., POTVIN, J.-Y., and SORIANO, P., 2002, Diversification strategies in local search
for a nonbifurcated network loading problem. European Journal of Operational
Research, 142, 231–241.

GLOVER, F., 1989, Tabu search – part I. ORSA Journal on Computing, 1, 190–206.
GLOVER, F., 1990, Tabu search – part II. ORSA Journal on Computing, 2, 4–32.
GLOVER, F. and LAGUNA, M., 1993, Tabu search. In C. R. Reeves, (ed), Modern Heuristic

Techniques for Combinatorial Problems (Oxford: Blackwell Science), chapter 3, pp.
70–142.

GÖTHE-LUNDGREN, M., LUNDGREN, J. T. and PERSSON, J. A., 2002, An optimization model
for refinery production scheduling. International Journal of Production Economics, 78,
255–270.

KARMARKAR, U. S. and SCHRAGE, L., 1985, The deterministic dynamic product cycling
problem. Operations Research, 33, 326–345.

KIMMS, A., 1996, Competitive methods for multi-level lot sizing and scheduling: Tabu search
and randomized regrets. International Journal of Production Research, 34, 2279–2298.

KIMMS, A., 1999, A genetic algorithm for multi-level, multi-machine lot sizing and scheduling.
Computers and Operations Research, 26, 829–848.

KIMMS, A. and DREXL, A., 1998, Proportional lot sizing and scheduling: some extensions.
NETWORKS, 32, 85–101.

LEE, H., PINTO, J. M., GROSSMANN, I. E. and PARK, S., 1996, Mixed-integer linear
programming model for refinery short-term scheduling of crude oil unloading with
inventory management. Industrial & Engineering Chemistry Research, 35, 1630–1641.

PERSSON, J. A., 2002, Production Scheduling and Shipment Planning at Oil Refineries:
Optimization Based Methods. Ph.D. thesis, Department of Mathematics, Linköping
University, Sweden.

POCHET, Y. and WOLSEY, L. A., 1995, Algorithms and reformulations for lot sizing problems.
In W. Cook, L. Lovász, P. Seymour, (eds), Combinatorial Optimization. DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, vol 20, pp. 245–293.

REKLAITIS, R. V., 1996, Overview of scheduling and planning of batch process operations. In
G. V. Reklaitis, A. K. Sunol, D. W. T. Rippin, Ö. Hortacsu, (eds), Batch Processing
Systems Engineering, Springer, NATO ASI Series F, pp. 660–705.

RIGBY, B., LASDON, L. S. and WAREN, A. D., 1995, The evolution of Texaco’s blending
systems: From OMEGA to Star Blend. Interfaces, 25, 64–83.

SHAH, N., 1996, Mathematical programming techniques for crude oil scheduling. Computers
and Chemical Engineering, 20,1227–1232.

471A tabu search heuristic

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
9
:
1
1

2
5

S
e
p
t
e
m
b
e
r

2
0
0
9

